Abstract

Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonic acid) (PEDOT:PSS) has been explored to fabricate flexible and stretchable conductors. Generally, PEDOT:PSS transparent anodes are prepared by spin-coating method. In this article, we adopt a method by dropping PEDOT:PSS aqueous solution on the PET plastic substrate to fabricate flexible electrodes. Compared with spin coating, drop-coating is simple and cost-effective with large-area fabrications. Through this method, we fabricated highly transparent conductive electrodes and systematically studied their electrical, optical, morphological and mechanical properties. With dimethyl sulfoxide/methanesulfonic acid (DMSO/MSA) treated PEDOT:PSS electrode, bendable devices based on non-fullerene system displayed an open-circuit voltage of 0.925 V, a fill factor of 70.74%, and a high power conversion efficiency (PCE) of 10.23% under 100 mW cm−2 illumination, which retained over 80% of the initial PCE value after 1000 bending cycles. Based on the findings, drop-coated PEDOT:PSS electrodes exhibited high suitability for the development of large-area and high-efficiency printed solar cell modules in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call