Abstract

We report the preparation of flexible and nano-porous iron oxide-reduced graphitic oxide (Fe2O3–rGO) electrodes using a novel photonic processing method. Due to this unique technique, high-temperature thermal processing could be accomplished on inexpensive and low-temperature substrates instantaneously as opposed to longer processing times of conventional thermal processing. The nano-porous morphology of the electrode not only accommodates the volume changes of the electrode but also facilitates the transport of the electrolyte ions into the electrodes. The as-prepared electrode showed excellent electrochemical performance with an initial specific capacitance of 179 F/g at 2 A/g. Moreover, it exhibited excellent specific capacitance retention after 5000 cycles (70%), revealing its superior cyclic stability. Along with having specific capacitance comparable to that of rigid electrodes, the as-prepared electrode is bendable and lightweight, signifying its potential application in foldable and wearable consumer electronic devices which require continuous energy supply while going through physical deformation.Graphic abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.