Abstract

Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafnia films can be grown on plastic substrates. The resulting highly flexible capacitor with a film thickness of 30 nm yields a remnant polarization of 10 µC cm−2. Bending tests show that the film ferroelectricity can be retained under a bending radius below 8 mm with up to 1000 bending cycles. The excellent flexibility is due to the extremely thin hafnia film thickness. Using the ferroelectric film as a gate insulator, a low voltage nonvolatile vertical organic transistor is demonstrated on a plastic substrate with an extrapolated date retention time of up to 10 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.