Abstract

Incorporating natural product antifoulants (NPAs) into coatings with controlled surface topography is considered a promising way to suppress marine fouling. However, the rapid leakage of NPAs and the relatively complicated process of constructing well-patterned topography remain unresolved problems for practical applications. In this work, capsaicin bonded to CoFe2O4/gelatin magnetic nanoparticles was mixed with a polydimethylsiloxane (PDMS)-based block copolymer. When applied together by a simple spray-coating method, these materials formed a film. The leakage of capsaicin was restrained by the chemical bonds with the CoFe2O4/gelatin nanospheres. The primary nanorough structure was constructed by the phase separation of the PDMS-based copolymer. The secondary nanorough structure was formed by the incorporation of capsaicin-loaded CoFe2O4/gelatin nanospheres, which were demonstrated to improve the orientation of the PDMS-based block copolymer chains. The combination of oriented nanotopography and nonleaking capsaicin endows the coating with enhanced, long-lasting antifouling ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call