Abstract

Herein, an efficient, low-cost, scalable in-situ poled fabrication strategy to construct a large area, highly sensitive, flexible piezocomposite nanogenerator comprising of rod shaped Zinc Ferrite (ZF-R) and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was developed. ZF-R with an average length of 330 nm was synthesized via a facile two-pot hydrothermal method and its PVDF-HFP-based composites with different weight ratio were prepared. Fabricated 3 wt% ZF-R incorporated PVDF-HFP flexible piezocomposite (3H) was used as an effective nanogenerator which could generate an output voltage of 8.5 V and current density ∼0.5 μA/cm2 upon repetitive mechanical stresses. The generated power could enlighten 21 commercial light emitting diodes (LEDs). Furthermore, 3H demonstrated the capability to monitor height with level of accuracy upto ±3 cm. Moreover, this flexible hybrid film can scavenge environmental sensations such as air flow (maximum 3.2 V peak to peak voltage) and muscular vibration when integrated with arm, wrist and finger in conjunction with superior integratebility and nontoxicity. Thus, this nanocomposite can be explored for application as ultrasensitive height monitor, mechanical energy scavenger and effective power source for driving portable electronics and wearable devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call