Abstract

Home care services are in high demand given how they are steadily becoming the primary source of care for the elderly. Powerful decision support tools are indispensable for effectively managing available staff in the context of ever-increasing demand for care and limited caregiver availability. This paper advances home care literature by introducing flexible task durations, thereby enabling tasks to be completed faster and ultimately more care to be scheduled. This new concept, which originates from practice, introduces an additional decision to be made when creating a schedule, thereby greatly increasing the scheduling complexity. Consequently, this paper introduces a new optimization-based decision support model which allows for scheduling with flexible task duration, as well as other types of flexibility. A computational study quantifies the impact of: (i) scheduling with a finer task granularity thereby enabling accurate prioritization of high and low priority care, (ii) flexibility in task duration enabling tasks to be completed faster and more care to be scheduled, and (iii) increasing the number of different locations visited by a caregiver thereby enabling a trade-off between the number of serviced clients and caregiver workload. A new publicly available real-world data set is used, obtained directly from home care organizations operating in Flanders. Analysis of the computational results demonstrates that significant improvements in operational efficiency may be realized with minimal effort required by organizations. Furthermore, the proposed algorithm’s performance is confirmed by comparison against the bounds obtained by solving an integer programming formulation of the problem. Finally, a management policy scheme is proposed which, when gradually implemented in a home care organization, results in a more efficient and therefore cost-effective deployment of its workforce.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.