Abstract

We present a simple design and a fabrication method for a high-performance, flexible, two-ply yarn supercapacitor based on irradiated CNT yarn and conductive polymer Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT/PSS). The CNT yarn is treated with gamma irradiation and the yarn surface is coated with the PEDOT/PSS to improve the energy storage capacitance of the as-spun yarn supercapacitor. A layer of PVA gel is coated on the surfaces of the CNT yarn and the composite yarn to form a separation layer containing electrolyte. The results show that the gamma irradiation greatly increases the electrical conductivity and improved the gram capacitance of the as-spun CNT two-ply yarn supercapacitor. The coating of PEDOT/PSS on the surface of the pure and irradiated CNT yarns further significantly improves the capacitance of the supercapacitors. The two-ply yarn supercapacitor constructed from the irradiation CNT yarn coated by PEDOT/PSS exhibits the large capacitance and high cyclic charge-discharge stability. Moreover, these two-ply yarn supercapacitors with fine diameters are highly flexible and can be easily woven or knitted into textile fabrics for uses in wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.