Abstract

Chemically exfoliated nanosheets have exhibited great potential for applications in various electronic devices. Solution-based processing strategies such as inkjet printing provide a low-cost, environmentally friendly, and scalable route for the fabrication of flexible devices based on functional inks of two-dimensional nanosheets. In this study, chemically exfoliated high-k perovskite nanosheets (i.e., Ca2Nb3O10 and Ca2NaNb4O13) are well dispersed in appropriate solvents to prepare printable inks, and then, a series of microcapacitors with Ag and graphene electrodes are printed. The resulting microcapacitors, Ag/Ca2Nb3O10/Ag, graphene/Ca2Nb3O10/graphene, and graphene/Ca2NaNb4O13/graphene, demonstrate high capacitance densities of 20, 80, and 150 nF/cm2 and high dielectric constants of 26, 110, and 200, respectively. Such dielectric enhancement in the microcapacitors with graphene electrodes is possibly attributed to the dielectric/graphene interface. In addition, these microcapacitors also exhibit good insulating performance with a moderate electrical breakdown strength of approximately 1 MV/cm, excellent flexibility, and thermal stability up to 200 ℃. This work demonstrates the potential of high-k perovskite nanosheets for additive manufacturing of flexible high-performance dielectric capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.