Abstract
BackgroundThere is strong incentive to model behaviour-dependent habitat selection, as this can help delineate critical habitats for important life processes and reduce bias in model parameters. For this purpose, a two-stage modelling approach is often taken: (i) classify behaviours with a hidden Markov model (HMM), and (ii) fit a step selection function (SSF) to each subset of data. However, this approach does not properly account for the uncertainty in behavioural classification, nor does it allow states to depend on habitat selection. An alternative approach is to estimate both state switching and habitat selection in a single, integrated model called an HMM-SSF.MethodsWe build on this recent methodological work to make the HMM-SSF approach more efficient and general. We focus on writing the model as an HMM where the observation process is defined by an SSF, such that well-known inferential methods for HMMs can be used directly for parameter estimation and state classification. We extend the model to include covariates on the HMM transition probabilities, allowing for inferences into the temporal and individual-specific drivers of state switching. We demonstrate the method through an illustrative example of plains zebra (Equus quagga), including state estimation, and simulations to estimate a utilisation distribution.ResultsIn the zebra analysis, we identified two behavioural states, with clearly distinct patterns of movement and habitat selection (“encamped” and “exploratory”). In particular, although the zebra tended to prefer areas higher in grassland across both behavioural states, this selection was much stronger in the fast, directed exploratory state. We also found a clear diel cycle in behaviour, which indicated that zebras were more likely to be exploring in the morning and encamped in the evening.ConclusionsThis method can be used to analyse behaviour-specific habitat selection in a wide range of species and systems. A large suite of statistical extensions and tools developed for HMMs and SSFs can be applied directly to this integrated model, making it a very versatile framework to jointly learn about animal behaviour, habitat selection, and space use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.