Abstract

Structured light, particularly in the terahertz frequency range, holds considerable potential for a diverse range of applications. However, the generation and control of structured terahertz radiation pose major challenges. In this work, we demonstrate a novel programmable spintronic emitter that can flexibly generate a variety of structured terahertz waves. This is achieved through the precise and high-resolution programming of the magnetization pattern on the emitter’s surface, utilizing laser-assisted local field cooling of an exchange-biased ferromagnetic heterostructure. Moreover, we outline a generic design strategy for realizing specific complex structured terahertz fields in the far field. Our device successfully demonstrates the generation of terahertz waves with diverse structured polarization states, including spatially separated circular polarizations, azimuthal or radial polarization states, and a full Poincaré beam. This innovation opens a new avenue for designing and generating structured terahertz radiations, with potential applications in terahertz microscopy, communication, quantum information, and light-matter interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.