Abstract

A neuromorphic electronic system requires the component devices to not only mimic typical synaptic behaviors but also be energy-efficient, together with excellent uniformity and tunable memory time. For this purpose, we fabricated amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors with plasma-enhanced atomic layer deposition AlO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> :H dielectrics, successfully demonstrating typical synaptic behaviors, such as excitatory and inhibitory postsynaptic current, pair-pules facilitation, dynamic filter, learning and forgetting abilities and spike-timing dependent plasticity. In particular, such synaptic transistors exhibit ultralow energy consumption down to 3.18 fJ per synaptic event and tunable extensive memory time ranging from 76.6 ms to at least thousands of seconds. The ultralow energy consumption is realized by electron trapping and releasing at and near the interface between a-IGZO channel and AlO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> :H dielectric under low voltages. By adjusting the concentration of oxygen vacancy defects in the a-IGZO domain adjacent to the interface by means of changing the growth temperature of the AlOx:H dielectrics, the memory time of the device can be further tuned on a large scale. Device flexibility was also demonstrated by fabricating the synaptic transistors onto polymer substrates at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.