Abstract
AbstractIn this study, a solvothermal method was used to synthesize anatase titanium dioxide (TiO2) nanoparticles in the presence of oleic acid (OA) and oleylamine (OM) as morphology‐directing agents. Functional nanocomposite fibers of poly(ethylene terephtalate) (PET) containing surfactants‐capped TiO2 nanoparticles were developed by electrospinning technique. The morphology, thermal stability and mechanical properties of PET/TiO2 nanocomposite mats were investigated as a function of TiO2 concentration. Morphology investigation showed interesting results in terms of the level of TiO2 dispersion inside the fibers and the improvement of the quality (smoothness) of the fibers' surface when the synthesized nanorhombic TiO2 nanoparticles were used compared to a commercial P25 TiO2 (AEROXIDE P25). The presence of OA and OM on the surface of the nanorhombic synthesized TiO2 led to a significant improvement of TiO2 dispersion inside the PET matrix. Furthermore, the physical interaction between the PET matrix and TiO2 nanoparticles resulted in an enhanced thermal stability, and an increase of the Young's modulus and tensile strength for TiO2 concentration up to 10 wt%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.