Abstract
The dose of administered chemotherapy drugs is crucial to determine due to the potential for efficient or adverse outcomes for cancer patients. To date, no user-friendly and low-cost method of doxorubicin (DOX) detection using nontoxic and biodegradable materials has been reported. For this reason, in this work, we have developed for the first time a nanofiber-based sensing platform for sensitive and on-site DOX assay in just 10 min. This is obtained thanks to printable, porosity and embeddability features of electrospun nanofibrous films (ENFFs) combined with nitrogen and sulfur co-doped carbon dots (NS-CDs) as sensing probes. The assay was done by just pipetting analyte on the hydrophilic spots of the fabricated photoluminescence water-stable ENFFs where the color intensity was being darkened. DOX quenched NS-CDs fluorescence onto ENFFs through inner filter effect. The developed sensor was either coupled with smartphone technology to provide miniaturized, portable and easy-to-use device or an ordinary spectrofluorimeter for solid-state sensing applications (detection limit of 5.4 nM). Moreover, applicability of the designed sensor was evaluated in human serum with satisfactory recoveries. It is more interesting that the fabricated NS-CDs/ENF scaffolds have a high potential to detect the intracellular DOX to enhance cell proliferation leading to be considered as a multimodal tool in biomedical research and clinical diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.