Abstract
Electronic skin for robotic tactile sensing has been studied extensively over the past years, yet practical applications of electronic skin for the grasping state monitoring during robotic manipulation are still limited. In this study, we present the fabrication and implementation of electronic skin sensor arrays for the detection of unstable grasping. The piezoresistive sensor arrays have the advantages of facile fabrication, fast response, and high reliability. With the tactile data from the sensor array, we propose two quantitative indicators, correlation coefficient and wavelet coefficient, to identify grasping with variable forces and slippage. Those two indicators reflect both time and frequency domain characteristics in the contact forces from the sensor array and can be obtained without large amount of calculation. We demonstrate the utility of this method under various conditions, the results indicate grasping with variable forces, and slippage can be distinguished by this method. The flexible sensor arrays are adopted for tactile sensing on a bionic hand, and the effectiveness of this method in detecting various grasping states has been verified. The electronic skin sensor array and the grasping state monitoring method are promising for applications in robotic dexterous manipulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.