Abstract

Clearing circulating tumor cells (CTCs) that are closely related to cancer metastasis and recurrence in peripheral blood helps to reduce the probability of cancer recurrence and metastasis. However, conventional therapies aiming at killing CTCs always cause damage to normal blood cells, tissues, and organs. Here, we report a flexible electronic catheter that can capture and kill CTCs via irreversible electroporation (IRE) with high efficiency. The flexible electronic catheter is assembled from nanofibers (NFs) with liquid metal-polymer conductor (MPC) electrodes. The NFs were modified with an epithelial cellular adhesion molecule (EpCAM) antibody on the surface to improve specific biorecognition and cell adhesion. Whole-body blood can be screened by the catheter repeatedly, during which the EpCAM antibody on a nanofiber can enrich CTCs to the surface of the catheter. Taking advantage of the high specific surface area, the capture efficiency of NF-based catheters for CTCs is 25 times higher than previously reported cases. Furthermore, the number of nonspecifically captured WBCs is less than 10 per mm2 areas of the catheter, compared to their original large number of 4-11 × 106 mL-1 of whole blood, showing good specificity of the flexible electronic catheter. The flexible and biocompatible MPC electrodes have a high killing efficiency of 100% for the captured CTCs in a rabbit model. No noticeable hematologic index and morphological changes of the vessels and major organs were observed, indicating that this electronic catheter had good biocompatibility. The present functional electronic catheter offers an alternative strategy for improving the efficiency of clinical cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.