Abstract

Flexible supercapacitors with high charge storage ability are needed for emerging applications in wearable electronics. Here, we introduce a novel flexible supercapacitor electrode by incorporating flower-like MoS2 into MXene via a hydrothermal technique. We mostly focused on the structural design for electrode configuration to enhance the charge storage mechanism. Three different electrodes composed of MoS2, MXene, and MoS2@MXene were fabricated via a versatile drop-casting and drying method. There are unique advantages of incorporating MoS2 with MXene such as the fast electron transfer, hydrophilicity of the interface, and structural stability. The MoS2@MXene // MXene flexible asymmetric supercapacitor device offered a high energy density of 1.21 W h /kg and a power density of 54.45 W /kg. Moreover, the asymmetric device exhibits nearly identical electrochemical behavior following 100 bending cycles at different angles. The high electrochemical activity of MoS2 and MXene and good interaction are ascribed to the superior electrochemical performance of the composite material. Furthermore, this research could guide the development of flexible, high-performance, and low-cost electrodes which will be useful in wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.