Abstract

In this paper, we present a THZ MMs filter with two independent stop-bands based on periodic metallic resonant structures patterned on the top of a flexible polyimide wafer. The optimized geometry parameters were obtained by numerous simulations using full wave finite integration technology of CST 2015. The resonant frequencies of the filter were 126.32 GHZ and 177.32 GHZ with 3-dB bandwidths of 19.3 GHZ and 9.1 GHZ, respectively. The S21 parameters can reach to −47.38 dB and −56.69 dB corresponding to two resonant peaks, which indicate the excellent stop-band performance. The MMs filter in our design is insensitive to the polarization angle of the incident EM waves due to the symmetrical characteristic of the proposed resonance structure. In order to intensively understand the transmission performance of the proposed MMs filter, a large number of simulations were performed based on the different permittivity, period of the unit cell, dielectric thickness, and geometric dimensions. The electric field and surface current distributions were analyzed to understand the mechanism of the EM wave transmission. The proposed MMs filter was fabricated using a surface micromachining process and tested using a THZ-TDS system. Measured terahertz transmission responses of the proposed MMs dual-band band-stop filter have reasonable correspondence with those from simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.