Abstract

Hardware acceleration has been proved an extremely promising implementation strategy for the digital signal processing (DSP) domain. Rather than adopting a monolithic application-specific integrated circuit design approach, in this brief, we present a novel accelerator architecture comprising flexible computational units that support the execution of a large set of operation templates found in DSP kernels. We differentiate from previous works on flexible accelerators by enabling computations to be aggressively performed with carry-save (CS) formatted data. Advanced arithmetic design concepts, i.e., recoding techniques, are utilized enabling CS optimizations to be performed in a larger scope than in previous approaches. Extensive experimental evaluations show that the proposed accelerator architecture delivers average gains of up to 61.91% in area-delay product and 54.43% in energy consumption compared with the state-of-art flexible datapaths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call