Abstract

ClpB reactivates aggregated proteins in cooperation with DnaK/J. The ClpB monomer contains two nucleotide-binding domains (D1, D2), a coiled-coil domain, and an N-terminal domain attached to D1 with a 17-residue-long unstructured linker containing a Gly-Gly motif. The ClpB-mediated protein disaggregation is linked to translocation of substrates through the central channel in the hexameric ClpB, but the events preceding the translocation are poorly understood. The N-terminal domains form a ring surrounding the entrance to the channel and contribute to the aggregate binding. It was suggested that the N-terminal domain's mobility that is maintained by the unstructured linker might control the efficiency of aggregate reactivation. We produced seven variants of ClpB with modified sequence of the N-terminal linker. To increase the linker's conformational flexibility, we inserted up to four Gly next to the GG motif. To decrease the linker's flexibility, we deleted the GG motif and converted it into GP and PP. We found that none of the linker modifications inhibited the basal ClpB ATPase activity or its capability to form oligomers. However, the modified linker ClpB variants showed lower reactivation rates for aggregated glucose-6-phosphate dehydrogenase and firefly luciferase and a lower aggregate-binding efficiency than wt ClpB. We conclude that the linker does not merely connect the N-terminal domain, but it supports the chaperone activity of ClpB by contributing to the efficiency of aggregate binding and disaggregation. Moreover, our results suggest that selective pressure on the linker sequence may be crucial for maintaining the optimal efficiency of aggregate reactivation by ClpB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.