Abstract
In this study, polyacrylonitrile (PAN) nanofiber yarns were obtained by twisting the nanofiber mat strips produced in the electrospinning device. On the drum collector, the nanofibers are produced in such a way that the diameter change can be controlled. Through stabilization and carbonization processes, PAN nanofiber yarns were converted to carbon nanofiber (CNF) yarns. The stabilization process stabilized the yarn structure, which was previously unstable, due to thermal treatments. The obtained CNF yarn had a diameter of approximately 360 μm and an average nanofiber diameter of 123 ± 20 nm. On a three-electrode system, the electrochemical performance of CNF yarn in 1 m H2SO4 electrolyte was determined using cyclic voltammetry and galvanostatic charge/discharge test methods. The specific capacitance of the CNF yarn electrode was determined to be 145 F/g at a current density of 0.2 A/g. Up to 500 charge/discharge cycles, the specific capacitance increased by approximately 20% and remained constant thereafter. Due to their superior properties such as high surface area, lightweight, and flexibility, CNF yarn electrodes can be used in a wide variety of electronic applications, including energy harvesting, energy storage (supercapacitors, batteries, etc.), and sensors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.