Abstract

The fabrication of flexible single-crystalline plasmonic or photonic components in a scalable way is fundamentally important to flexible electronic and photonic devices with high speed, high energy efficiency, and high reliability. However, it remains a challenge. Here, we have successfully synthesized flexible single-crystalline optical hyperbolic metamaterials by directly depositing refractory nitride superlattices on flexible fluorophlogopite-mica substrates with magnetron sputtering. Interestingly, these flexible hyperbolic metamaterials show dual-band hyperbolic dispersion of dielectric constants with small dielectric losses and high figures of merit in the visible to near-infrared ranges. More importantly, the optical properties of these nitride-based flexible hyperbolic metamaterials show remarkable stability during 1000 °C heating or after being bent 1000 times. Therefore, the strategy developed in this work offers an easy and scalable route for fabricating flexible, high-performance, and refractory plasmonic or photonic components, which can significantly expand the applications of current electronic and photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.