Abstract

Biological compounds often provide clues to advance material designs. Replicating their molecular structure and functional motifs in artificial materials offers a blueprint for unprecedented functionalities. Here, we report a flexible biomimetic thermal sensing (BTS) polymer that is designed to emulate the ion transport dynamics of a plant cell wall component, pectin. Using a simple yet versatile synthetic procedure, we engineer the physicochemical properties of the polymer by inserting elastic fragments in a block copolymer architecture, making it flexible and stretchable. The thermal response of our flexible polymer outperforms current state-of-the-art temperature sensing materials, including vanadium oxide, by up to two orders of magnitude. Thermal sensors fabricated from these composites exhibit a sensitivity that exceeds 10 mK and operate stably between 15° and 55°C, even under repeated mechanical deformations. We demonstrate the use of our flexible BTS polymer in two-dimensional arrays for spatiotemporal temperature mapping and broadband infrared photodetection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.