Abstract

A high-sensitivity flexible field-effect transistor (FET) based glucose sensor is fabricated that can surpass the conventional electrochemical glucometers in terms of sensitivity, limit of detection, and other performance parameters. The proposed biosensor is based on the FET operation with the advantage of amplification which provides a high sensitivity and a very low limit of detection. Hybrid metal oxide (ZnO and CuO) nanostructures have been synthesized in the form of hollow spheres (ZnO/CuO-NHS). The FET was fabricated by depositing ZnO/CuO-NHS on the interdigitated electrodes. Glucose oxidase (GOx) was immobilized successfully on the ZnO/CuO-NHS. Three different outputs of the sensor are examined, the FET current, the relative current change, and the drain voltage. The sensitivity of the sensor for each output type has been calculated. The readout circuit can convert the current change to the voltage change that has been used for wireless transmission. The sensor has a very low limit of detection of 30 nM with satisfactory reproducibility, good stability, and high selectivity. The electrical response of the FET biosensor towards the real human blood serum samples demonstrated that it can be offered as a potential device for glucose detection in any medical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call