Abstract

AbstractReal‐time monitoring of wound healing remains a major challenge in clinical tissue regeneration, calling the need for the development of biomaterial‐guided on‐site monitoring wound healing technology. In this study, multifunctional double colorimetry‐integrated polyacrylamide‐quaternary ammonium chitosan‐carbon quantum dots (CQDs)‐phenol red hydrogels are presented, aiming to simultaneously detect the wound pH level, reduce bacterial infection, and promote wound healing. The hybridization of CQDs and pH indicator (phenol red) with the hydrogels enables their high responsiveness, reversibility, and accurate indication of pH variability to reflect the dynamic wound status in the context of both ultraviolet and visible light. Furthermore, these visual images can be collected by smartphones and converted into on‐site wound pH signals, allowing for a real‐time evaluation of the wound dynamic conditions in a remote approach. Notably, the hydrogels exhibit excellent hemostatic and adhesive properties, maintain sufficient wound moisture, and promote wound healing via their high antibacterial activity (against Staphylococcus Aureus, and Escherichia Coli) and skin repair function. Overall, the resulting hydrogels have high potential as a novel smart and flexible wound dressing platform for theranostic skin regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call