Abstract
Abstract Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone (PISO2) and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides researched in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204°C air for up to 1000 hrs and to a 72-hour water boil. LSS tests at RT, 177°C and 204°C were performed before (controls) and after these exposures. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs, 33 MPa at RT, 30 MPa at 177°C, and 26 MPa at 204°C. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80% of its control strengths. Most of the four adhesive systems showed reduced strengths for all test temperatures although they still retained a high percentage of their original strength (<60%) except for one case. The predominant failure mode was cohesive with no significant change in the Tgs. Although the LARC-F-SO2 could not be prepared in diglyme alone as the solvent, the properties of the resulting adhesive were notable. The darkening of the adhesive during bonding was typical of systems which utilize amide solvents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.