Abstract

Implementation of the self-healing concept in coatings is challenging because they have to combine mechanical strength and chain mobility. This challenge is addressed in this work by studying the effect of the polymer microstructure on the mechanical properties and self-healing ability of waterborne poly(urethane-urea) coatings containing aromatic disulfide dynamic bonds. The structural modifications studied are the concentration and flexibility of the aromatic disulfide units and the effect of cross-linking. The effects and limits of these structural changes on the mechanical properties of the polymers and their healability were determined via a combination of DMA measurements, tensile tests, and rheological and scratch closure experiments. It was found that the flexibility of the disulfide unit was key to develop more efficient self-healing materials which offer the necessary molecular mobility for self-healing while simultaneously maintaining a level of mechanical strength that are essential for coating applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.