Abstract

In relay-based wireless networks, messages need to be forwarded via intermediate relay mobile terminals (MTs). However, because of various transmission distances and unbalanced traffic load, some relay MTs may tend to drain their batteries faster than others. After a certain number of MTs deplete their battery energy, the peer-to-peer communication may become disconnected. Depletion of the battery energy of any relay MT will degrade the performance of the relay-based wireless networks. The network lifetime is defined as the time at which an MT runs out of its battery energy for the first time within the entire network. Moreover, with commercial development of cellular systems proceeding, the research community turns its attention to the next generation systems. It is clear that next generation wireless networks will be heterogeneous wireless networks with a hierarchical overlay of networks of potentially different technologies. However, maintaining quality of service (QoS) in the heterogeneous environments of the future turns out to be a challenging task. In this article, a novel QoS constrained network lifetime extension cellular ad hoc augmented network (QCLE CAHAN) architecture is proposed for next generation wireless networks. The QCLE CAHAN architecture is proposed to achieve the maximum network lifetime under the end-to-end hop-count constraint (QoS constraint). QCLE CAHAN has a hybrid architecture, in which each MT of CDMA cellular networks has ad hoc communication capability. QCLE CAHAN is an evolutionary approach to traditional cellular networks. QCLE CAHAN can dynamically balance battery energy across MTs and extend the network lifetime. QCLE CAHAN can regulate the number of hops between the base station and the MT to adapt to the end-to-end QoS requirements for different services. We show that the network lifetime is much higher in the case of QCLE CAHAN than in the case of traditional cellular networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.