Abstract
Flexible and transparent conductive films are highly desirable in some optoelectronic devices, such as smart windows, touch panels, as well as displays and electromagnetic protection field. Silver nanowire (Ag NW) has been considered as the best material to replace indium tin oxide (ITO) to fabricate flexible transparent electromagnetic interference (EMI) shielding films due to its superior comprehensive performance. However, the common substrates supporting Ag NWs require surface modification to enhance the adhesion with Ag NWs. In this work, a flexible and transparent Ag NWs EMI shielding film with sandwich structure through a facile rod-coating method, wherein Ag NWs network were embedded between biodegradable gelatin-based substrate and cover layer. The interfacial adhesion between Ag NWs and gelatin-based layers was enhanced by hydrogen-bonding interaction and swelling effect without any pretreatment. The shielding effectiveness (SE) of the G/Ag NW/G (G represents gelatin-based layer) film reaches 37.74 dB at X band with an optical transmittance of 72.0 %. What’s more, the flexible gelatin-based layer and encapsulated structure endow the resultant G/Ag NW/G film integrating excellent mechanical properties, reliable durability, antioxidation, as well as anti-freezing performance. This work paves a new way for fabricating flexible transparent EMI shielding films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.