Abstract

A series of guest-binding Cu(II) coordination polymers, {[Cu(bpetha)2(acetone)2].2PF6}n (bpetha = 1,2-bis(4-pyridyl)ethane) (1), {[Cu(bpetha)2(DMF)2].2PF6}n (2), {[Cu(bpetha)(2)(MeCN)(2)].2PF6.2MeCN}n (3), {[Cu(bpetha)2(H2O)2].2PF6.3THF.2H2O}n (4), {[Cu(bpetha)2(H2O)2].2PF6.3dioxane}n (5), and {[Cu(bpetha)2(H2O)2].2PF6.2-PrOH.2H2O}n (6), have been synthesized and crystallographically characterized. Their framework stabilities and guest-exchange properties have also been investigated. All compounds form a similar framework motif, a "double chain", in which the bpetha ligands bridge Cu(II) centers to form 1-D [Cu(bpetha)2]n double chains. A variety of Lewis base guest molecules, such as H2O, acetone, DMF, MeCN, THF, dioxane, and 2-PrOH, are incorporated into the assembly of the 1-D double chains. These chains flexibly change their forms of assembly in a guest-dependent manner. Interestingly, acetone, DMF, and MeCN guests with a carbonyl or cyanide group coordinate directly to the axial sites of the Cu(II) centers; in contrast, THF, dioxane, and 2-PrOH guests with an ether or alcohol group are incorporated into the frameworks not via coordination bonds but via weak interactions (hydrogen bonds and van der Waals forces). This selectivity is probably due to steric effects at coordinated oxygen or nitrogen atoms of the guests. Crystal-to-crystal transformations triggered by guests are observed, during which guests coordinated to the Cu(II) axial sites are readily removed and replaced by other guests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.