Abstract
Flexible resistive strain sensors have been fabricated by micromolding Pd alkanethiolate on polyimide substrates and subjecting to thermolysis in air. Thus produced stripes were ∼1 μm wide with spacing of ∼0.5 μm and contained Pd nanoparticles in carbon matrix. The nanoparticle size and the nature of carbon are much dependent on the thermolysis temperature as is also the resistance of the microstripes. Generally, lower thermolysis temperatures (<230 °C) produced stripes containing small Pd nanoparticles with significant fraction of carbon from the precursor decomposition. The stripes were poorly conducting yet interestingly, exhibited change of resistance under tensile and compressive strain. Particularly noteworthy are the stripes produced from 195 °C thermolysis, which showed a high gauge factor of ∼390 with strain sensitivity, 0.09%. With molding at 230 °C, the stripes obtained were highly conducting, and amazingly did not change the resistance with strain even after several bending cycles. The latter are ideal as flexible conduits and interconnects. Thus, the article reports a method of producing flexible sensitive strain sensors on one hand and on the other, flexible conduits with unchanging resistance, merely by fine-tuning the precursor decomposition under the molding conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.