Abstract

ABSTRACTThis paper presents a hybrid animation approach to the flexible and rapid crack simulation of brittle material. At the physical level, the local stress tensors induced by collision are analyzed by using the smoothed particle hydrodynamics (SPH) formulation. Specifically, in order to determine the internal stress when rigid bodies collide with each other or neighboring environments, we treat all of them as completely rigid body that has infinite stiffness and then evaluate virtual displacement for colliding particles. At the geometric level, in order to faithfully maintain the fracture interface during the crack simulation, we utilize an efficient shape representation of solid based on the tetrahedral decomposition of the original solid geometry. This novel hybrid approach resorts to local particle models, whose goal is to avoid heavy computational burden during crack interface updating and topological changing, and meanwhile, it facilitates the user‐initiated interactive control during the crack generation and propagation. Our animation experiments demonstrate the effectiveness of our novel particle‐based method to simulate the crack of brittle material. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.