Abstract

We report printed flexible optoelectronic sensors composed of red organic light-emitting diodes (OLEDs) and organic photodiodes (OPDs) for detection of various biological signals in a photoplethysmograph (PPG) device. Fabricated flexible OLEDs achieved maximum luminance > 1000 cd/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at 9 V, with peak at 640 nm. Maximum flexible OPD photosensitivity for the poly(3-hexylthiophene-2, 5-diyl) and phenyl-C61-butyric acid methyl ester (PCBM) heterojunction is 2 x 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at 0 V and 1.76 at -1 V, irradiated with 1.2 mW/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at 660 nm. The diketopyrrolopyrrolethieno [3,2-b]thiophene blended with PCBM OPDs with poly (3,4-ethylenedioxythiophene):polystyrene sulfonate anode showed photosensitivity = 84 at -1 V bias to almost 6 x 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> at 0 V accompanied by low dark current (9.5 x 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-8</sup> A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at -1 V). PPG signals were successfully detected using the developed flexible PPG sensor and the conventional driving circuit. Human studies were conducted to evaluate the flexible PPG sensor performance in practical applications. Subject drowsiness was estimated from heart rate variability, extracted from the PPG signals, using machine learning algorithms. The flexible PPG sensor achieved 79.2% accuracy and 72.1% area under the receiver (AUC) to predict drowsiness (60-s window), which are meaningful results compared with conventional PPG sensors (83.3% accuracy and 69% AUC). Drowsiness estimation experiments using two PPG signals showed that the flexible PPG sensor achieved similar or better performance compared to conventional PPG sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.