Abstract
We give two generalizations of the induced dimension reduction (IDR) approach for the solution of linear systems. We derive a flexible and a multi-shift quasi-minimal residual IDR variant. These variants are based on a generalized Hessenberg decomposition. We present a new, more stable way to compute basis vectors in IDR. Numerical examples are presented to show the effectiveness of these new IDR variants and the new basis compared with existing ones and to other Krylov subspace methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.