Abstract

Recently, the flexible and environmental-friendly piezoelectric generators have drawn much attentions due to the power-supplying apply applications of powering implantable and wearable devices. In this work, an environmental-friendly and flexible piezoelectric nanogenerator is proposed based on electrospinning nanofiber which is composed of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) and polyvinylidene fluoride–trifluoroethylene P(VDF-TrFE). The as-prepared nanofiber mats with different amounts of doping of BZT-BCT nanoparticles varied from 0 wt% to 50 wt% are characterized by XRD and SEM. Based on the testing results, the nanofiber generator with 40 % content of BZT-BCT exhibits the excellent output performance, which produces the output voltage as high as 13.01 V under cyclic tapping under 6 N and 10 Hz, which is mostly attributed from the doping of the BZT-BCT with high piezoelectric coefficient. The generator can be deployed as the self-powered sensor, which can measure the tensile and compressive deformation, the movement of different parts of body. Due to the advantages of flexibility and environmental kindness, this developed nanogenerator has great potential for wearable and implantable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.