Abstract
In this paper we prove new embedding results for compactly supported deformations of $CR$ submanifolds of $\mathbb{C}^{n+d}$: We show that if $M$ is a $2$-pseudoconcave $CR$ submanifold of type $(n,d)$ in $\mathbb{C}^{n+d}$, then any compactly supported $CR$ deformation stays in the space of globally $CR$ embeddable in $\mathbb{C}^{n+d}$ manifolds. This improves an earlier result, where $M$ was assumed to be a quadratic $2$-pseudoconcave $CR$ submanifold of $\mathbb{C}^{n+d}$. We also give examples of weakly $2$-pseudoconcave $CR$ manifolds admitting compactly supported $CR$ deformations that are not even locally $CR$ embeddable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.