Abstract

Flexible pressure sensors based on piezoresistive induction have recently become a research hotspot due to the simple device structure, low energy consumption, easy readout mechanism and excellent performance. For practical applications, flexible pressure sensors with both high sensitivity and low-cost mass production are highly desirable. Herein, this paper presents a high-sensitivity piezoresistive pressure sensor based on a micro-structured elastic electrode, which is low cost and can be mass-produced by a simple method of sandpaper molding. The micro-structure of the electrode surface under external pressure causes a change in the effective contact area and the distance between the electrodes, which exhibits great pressure sensitivity. The test results show that the surface structure is twice as sensitive as the planar structure under low pressure conditions. This is because of the special morphology of silver nanowires (AgNWs), which exhibits the tip of nanostructures on the surface and realizes the quantum tunneling mechanism. The sensor has high sensitivity for transmitting signals in real time and it can also be used to detect various contact actions. The low cost mass production and high sensitivity of flexible pressure sensors pave the way for electronic skin, wearable healthcare monitors and contact inspection applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call