Abstract

Infrared stealth technology plays a vital role in development of defense industry and new military equipment. The current study focused on a novel type of flexible and foldable composite films based on polyimide (PI)/phosphorene (PR) hybrid aerogel and phase change material (PCM) for infrared stealth and thermal camouflage applications. The composite films were successfully obtained by fabricating a PI/PR hybrid aerogel through prepolymerizaton, film casting, freeze-drying, and thermal imidization, followed by vacuum impregnation of polyethylene glycol (PEG) as a PCM into the aerogel framework. The combination of PI and PR nanoflakes endows the hybrid aerogel with an effective enhancement in mechanical properties, near infrared absorption, and infrared photothermal conversion. The resultant composite films not only present prominent tensile and fatigue-resistant performance but also exhibit a good thermal regulation capability with a high latent-heat capacity of over 150 J/g. More importantly, the composite films demonstrate good infrared stealth and thermal camouflage performance on the high-temperature targets through effective thermal buffer and insulation. With ultralight, flexible, foldable, shape-tunable, and thermal self-regulatory characteristics, the PI/PR aerogel/PEG composite films developed by this work exhibit great application potential in infrared stealth and thermal camouflage for new military equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.