Abstract

Flexible and wearable supercapacitor (SC) fabrics have received considerable research interests recently. However, their high hydrophobicity, poor conductivity, inferior capacitance, and low energy density remain a bottleneck to be solved. Herein, a highly flexible and conductive carbonized cotton fabric (CCF) covered by a unique nanostructured Ni(OH)2 layer is fabricated via a facile high-temperature carbonization process, followed by an electrochemical deposition (ED) treatment. The nanostructured Ni(OH)2 greatly improves the hydrophilicity of CCF to promote electrolyte penetration and offers abundant electroactive sites, leading to dramatically increased specific capacitance and operating potential window (OPW). The resultant Ni(OH)2@CCF is then applied as the electrode for an aqueous symmetric SC device. This device has an OPW of 1.4 V and exhibits a high specific capacitance of 131.43 F g–1 at the current density of 0.25 A g–1 with a high energy density (35.78 Wh kg–1 at a power density of 0.35 kW kg...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.