Abstract
Combing ambient intelligence with service robots has shown great potentials in generating radically new system architecture, namely Component-Based Robotic System CBRS. In order to enable robot to automatically and flexibly utilize service resources in intelligent environment, a novel semantic-quantitative hierarchical service composition method is proposed for supporting complex task accomplishment. A service model with two-layered structure is put forward which incorporates ontology-based service functionality abstraction and state information of individual service resources. A set of unified semantic matching rules are established, based on which a bidirectional breadth-first traversal search algorithm inspired by the maze problem is proposed, which is capable of reliably and dynamically generating plans according to the task requirement. Applications in domestic service robot scenarios are described and experimental results validate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Ambient Intelligence and Smart Environments
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.