Abstract

Dendrite formation is a critical challenge for the applications of lithium (Li) metal anodes. In this work a new strategy is demonstrated to address this issue by fabricating an Li amalgam film on its surface. This protective film serves as a flexible buffer that affords repeated Li plating/stripping. In symmetric cells, the protected Li electrodes exhibit stable cycling over 750 hours at a high plating current and capacity of 8 mA cm-2 and 8 mAh cm-2 , respectively. Coupled with high-loading cathodes (ca. 12 mg cm-2 ) such as LiFePO4 and LiNi0.6 Co0.2 Mn0.2 O2 , the protected hybrid anodes demonstrate significantly improved cell stability, indicating its reliability for practical development of Li metal batteries. Interfacial analyses reveal a unique plating-alloying synergistic function of the protective film, where Li beneath the film is actively involved in the electrode reactions upon cycling. Lithium amalgams enrich the alloy anode family and provide new perspectives for the rational design of dendrite-free anodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.