Abstract
This paper designs an incremental nonlinear dynamic inversion control law for free-flying flexible aircraft, which can regulate rigid-body motions, alleviate gust loads, reduce the wing root bending moment, and suppress elastic modes. By fully exploring the sensor measurements, the model dependency of the proposed control law can be reduced while maintaining desirable robustness, which simplifies the implementation process and reduces the onboard computational load. The elastic states are observed online from accelerometer measurements, with a Padé approximation to model the pure time delay. Theoretical analyses based on the Lyapunov methods and the nonlinear system perturbation theory show that the proposed control has inherent robustness to model uncertainties, external disturbances, and sudden actuator faults. These merits are demonstrated by time-domain simulations in various spatial turbulence and gust fields, as well as by a Monte Carlo study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.