Abstract
Graphite sheets are known to exhibit remarkable performance in applications such as heating panels and critical elements of thermal management systems. Industrial-scale production of graphite films relies on high-temperature treatment of polymers or calendering of graphite flakes; however, these methods are limited to obtaining micrometer-scale thicknesses. Herein, we report the fabrication of a flexible and power-efficient cm2-scaled heater based on a polycrystalline nanoscale-thick graphite film (NGF, ∼100 nm thick) grown by chemical vapor deposition. The stability of these NGF heaters (operational in air over the range 30-300 °C) is demonstrated by a 12-day continuous heating test, at 215 °C. The NGF exhibits a fast switching response and attains a steady peak temperature of 300 °C at a driving bias of 7.8 V (power density of 1.1 W/cm2). This excellent heating performance is attributed to the structural characteristics of the NGF, which contains well-distributed wrinkles and micrometer-wide few-layer graphene domains (characterized using conductive imaging and finite element methods, respectively). The efficiency and flexibility of the NGF device are exemplified by externally heating a 2000 μm-thick Pyrex glass vial and bringing 5 mL of water to a temperature of 96 °C (at 2.4 W/cm2). Overall, the NGF could become an excellent active material for ultrathin, flexible, and sustainable heating panels that operate at low power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.