Abstract

Microfluidics Traditional microfluidic devices are fabricated either by building up layers or by etching solid materials, but both ways primarily result in devices with rectangular, triangular, or circular cross sections and limited flow geometries. Yuan et al. show that complex shapes like crosses and stars or even arbitrary shapes can be designed into millimeter-scale objects and then reduced in dimension, but not in cross-sectional profile, through a fiber drawing process. Channels with concave cross sections were used to study inertial flow effects, whereas coextrusion of conductive wires allowed for inertial dielectrophoretic particle manipulation. Sorted particles could then be extracted through the addition of a fiber-to-world connector that can split flow streams without disturbing the laminar flow. Proc. Natl. Acad. Sci. U.S.A. 115 , E10830 (2018).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.