Abstract

In recent years, the engineering of flexible loops to improve enzyme properties has gained attention in biocatalysis. Herein, we report a loop engineering strategy to improve the stability of the substrate access tunnels, which reveals the molecular mechanism between loops and tunnels. Based on the dynamic tunnel analysis of CYP116B3, five positions (A86, T91, M108, A109, T111) in loops B-B′ and B′-C potentially affecting tunnel frequent occurrence were selected and subjected to simultaneous saturation mutagenesis. The best variant 8G8 (A86T/T91L/M108N/A109M/T111A) for the dealkylation of 7-ethoxycoumarin and the hydroxylation of naphthalene was identified with considerably increased activity (134-fold and 9-fold) through screening. Molecular dynamics simulations showed that the reduced flexibility of loops B-B′ and B′-C was responsible for increasing the stability of the studied tunnel. The redesign of loops B-B′ and B′-C surrounding the tunnel entrance provides loop engineering with a powerful and likely general method to kick on/off the substrate/product transportation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.