Abstract

Recently, D. Bucur and M. Nahon used boundary homogenisation to show the remarkable flexibility of Steklov eigenvalues of planar domains. In the present paper we extend their result to higher dimensions and to arbitrary manifolds with boundary, even though in those cases the boundary does not generally exhibit any periodic structure. Our arguments use a framework of variational eigenvalues and provide a different proof of the original results. Furthermore, we present an application of this flexibility to the optimisation of Steklov eigenvalues under perimeter constraint. It is proved that the best upper bound for normalised Steklov eigenvalues of surfaces of genus zero and any fixed number of boundary components can always be saturated by planar domains. This is the case even though any actual maximisers (except for simply connected surfaces) are always far from being planar themselves. In particular, it yields sharp upper bound for the first Steklov eigenvalue of doubly connected planar domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.