Abstract

This paper presents the results of a conceptual study and simulation experimentation aimed at understanding the underlying mechanisms of sequencing flexibility-enabled manufacturing lead-time reduction. In spite of a large body of literature on flexibility, the exact mechanism that enables flexibility to reduce the lead time is not fully understood. As a part of our research efforts on the proactive application of flexibility for the performance enhancement of manufacturing systems, we are motivated to study how flexibility can be employed in a proactive manner to reduce the manufacturing lead time and to develop an understanding of the underlying mechanisms. Towards this end, we have developed simulation models of simple flexible manufacturing systems and studied the effect of sequencing flexibility on the lead-time performance under different conditions of part load and machine load balancing. The studies indicated that sequencing flexibility has a significant effect on the lead-time performance of the manufacturing system, and the effect of flexibility varies under different conditions of load balancing. Further studies indicate the existence of complex interactions between the sequencing flexibility, process concurrency, processor load balancing, and manufacturing lead time. This paper intends to discuss some of the interesting results of these studies with a focus on the inherent mechanisms of sequencing flexibility-enabled lead-time reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.