Abstract

The objective of this investigation is to design a nonlinear Pressurized Water Reactor (PWR) core load following control system. On the basis of modeling a nonlinear PWR core, linearized models of the core at five power levels are chosen as local models of the core to substitute the nonlinear core model in the global range of power level. The Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) robust optimal control is used to contrive a controller with the robustness of a core local model as a local controller of the nonlinear core. Meanwhile, LTR principles are analyzed and proved theoretically by adopting the matrix inversion lemma. Based on the local controllers, the principle of flexibility control is presented to design a flexibility controller of the nonlinear core at a random power level. A nonlinear core model and a flexibility controller at a random power level compose a core load following control subsystem. The combination of core load following control subsystems at all power levels is the core load following control system. Finally, the core load following control system is simulated and the simulation results show that the control system is effective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call