Abstract

Let \({\varvec{\Gamma }} = (V,E)\) be a (non-trivial) finite graph with \(\lambda : E \rightarrow {\mathbb {R}}_{+}\) an edge labeling of \({\varvec{\Gamma }}\). Let \(\rho : V\rightarrow {\mathbb {R}}^{2}\) be a map which preserves the edge labeling, i.e., $$\begin{aligned} \Vert \rho (u) - \rho (v)\Vert _{2} = \lambda ((u,v)), \,\forall (u,v)\in E, \end{aligned}$$where \(\Vert x-y\Vert _{2}\) denotes the Euclidean distance between two points \(x,y \in {\mathbb {R}}^{2}\). The labeled graph is said to be flexible if there exists an infinite number of such maps (up to equivalence by rigid transformations) and it is said to be movable if there exists an infinite number of injective maps (again up to equivalence by rigid transformations). We study movability of Cayley graphs and construct regular movable graphs of all degrees. Further, we give explicit constructions of dense, movable graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.