Abstract

The BigDFT project was started in 2005 with the aim of testing the advantages of using a Daubechies wavelet basis set for Kohn-Sham (KS) density functional theory (DFT) with pseudopotentials. This project led to the creation of the BigDFT code, which employs a computational approach with optimal features of flexibility, performance, and precision of the results. In particular, the employed formalism has enabled the implementation of an algorithm able to tackle DFT calculations of large systems, up to many thousands of atoms, with a computational effort that scales linearly with the number of atoms. In this work, we recall some of the features that have been made possible by the peculiar properties of Daubechies wavelets. In particular, we focus our attention on the usage of DFT for large-scale systems. We show how the localized description of the KS problem, emerging from the features of the basis set, is helpful in providing a simplified description of large-scale electronic structure calculations. We provide some examples on how such a simplified description can be employed, and we consider, among the case-studies, the SARS-CoV-2 main protease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.