Abstract

Advancements in deep learning enable neural network (NN) inference to be a service, but service providers and clients want to keep their inputs secret for privacy protection. <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Private Inference</i> is the task of evaluating NN without leaking private inputs. Existing secure multiparty computation (MPC)-based solutions mainly focus on fixed bit-width methodology, such as 32 and 64 bits. Binary Neural Network (BNN) is efficient when evaluated in MPC and has achieved reasonable accuracy for commonly used datasets, but prior private BNN inference solutions, which focus on <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Boolean Circuits</i> , are still costly in communication and run-time. In this paper, we introduce FLEXBNN, a fast private BNN inference framework using three-party computation (3PC) in <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Arithmetic Circuits</i> against semi-honest adversaries with honest-majority. In FLEXBNN, we propose to employ flexible and small bit-width equipped with a seamless bit-width conversion method and design several specific optimizations towards the basic operations: i) We propose bit-width determination methods for Matrix Multiplication and Sign-based Activation function. ii) We integrate Batch Normalization and Max-Pooling into the Sign-based Activation function for better efficiency. iii) More importantly, we achieve seamless bit-width conversion within the Sign-based Activation function with no additional cost. Extensive experiments illustrate that FLEXBNN outperforms state-of-the-art solutions in communication, run-time, and scalability. On average, FLEXBNN is 11× faster than XONN (USENIX Security’ 19) in LAN, 46× (resp. 9.3×) faster than QUOTIENT (ACM CCS’19) in LAN (resp. WAN), 10× faster than BANNERS (ACM IH&MMSec’21) in LAN, and 1.1-2.9× (resp. 1.5-2.7×) faster than FALCON (semi-honest, PoPETs’21) in LAN (resp. WAN), and improves the respective communication by 500×, 127×, and 1.3-1.5× compared to XONN, BANNERS, and FALCON.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.